Direct Proof – Divisibility Lecture 15 Section 4.3

Robb T. Koether

Hampden-Sydney College

Fri, Feb 7, 2014

Robb T. Koether (Hampden-Sydney College)

Direct Proof – Divisibility

Fri, Feb 7, 2014 1 / 23

э

DQC

Prime Numbers

The Fundamental Theorem of Arithmetic

Robb T. Koether (Hampden-Sydney College)

Direct Proof – Divisibility

Fri, Feb 7, 2014 2 / 23

< 61 b

프 🖌 🖌 프

Divisibility

- 2 Prime Numbers
- 3 The Fundamental Theorem of Arithmetic

Assignment

DQC

<ロト < 回ト < 回ト < 回ト

Definition (Rational Number)

Let $a, b \in \mathbb{Z}$. Then a divides b, denoted $a \mid b$, if $a \neq 0$ and there exists $c \in \mathbb{Z}$ such that b = ac.

- In other words, *a* divides *b* if *b* is a multiple of *a*.
- Note the following:
 - Every integer divides 0, but 0 divides no integer.
 - 1 divides every integer, but only 1 and -1 divide 1.
 - Every integer except 0 divides itself.

∃ ⊳

Theorem

Let $a, b, c, \in \mathbb{Z}$. If $a \mid b$ and $b \mid c$, then $a \mid c$.

Robb T. Koether (Hampden-Sydney College)

Direct Proof - Divisibility

Fri, Feb 7, 2014 5 / 23

1

DQC

Proof.

- Let $a, b, c, \in \mathbb{Z}$ and suppose that $a \mid b$ and $b \mid c$.
- Then there exist integers s and t such that b = as and c = bt.
 So

$$c = bt$$

 $= (as)t$
 $= a(st)$

• $st \in \mathbb{Z}$, so it follows that $a \mid c$.

Robb T. Koether (Hampden-Sydney College)

Direct Proof – Divisibility

Fri, Feb 7, 2014 6 / 23

∃ >

< **A** → <

Theorem

Let $a, b, c \in \mathbb{Z}$. If $a \mid b$ and $b \mid a + c$, then $a \mid c$.

Robb T. Koether (Hampden-Sydney College)

Direct Proof - Divisibility

Fri, Feb 7, 2014 7 / 23

1

DQC

Proof.

- Let $a, b, c \in \mathbb{Z}$ and suppose that $a \mid b$ and $b \mid a + c$.
- Then there exist integers s and t such that b = as and a + c = bt.
 Then

• Therefore, *a* | *c*.

Robb T. Koether (Hampden-Sydney College)

< 17 × <

3 The Fundamental Theorem of Arithmetic

Assignment

Robb T. Koether (Hampden-Sydney College)

Direct Proof – Divisibility

Fri, Feb 7, 2014 9 / 23

э

DQC

Definition

An integer $p \in \mathbb{N}$ is prime if $p \ge 2$ and the only divisors of p are 1 and p.

• The last condition is equivalent to saying

$$\forall a \in \mathbb{N}, a \mid p \rightarrow (a = 1 \lor a = p).$$

- List the first 15 prime numbers.
- What is the negation of the property of being a prime?

Definition

An integer $n \in \mathbb{N}$ is composite if there exist integers *a* and *b* such that a > 1, b > 1, and n = ab.

- List the first 15 composite numbers.
- Are there any numbers that are neither prime nor composite?
- Is 1 prime? Is 1 composite?
- Is 0 prime? Is 0 composite?

∃ ► < ∃ ►</p>

- There is no problem with extending the definitions of prime and composite to negative integers.
- An integer $p \in \mathbb{Z}$ is prime if $|p| \ge 2$ and if $a \mid p$, then |a| = 1 or |a| = p.
- An integer n ∈ Z is composite if there exist integers a and b such that |a| > 1 and |b| > 1 and n = ab.

Definition

An integer $u \in \mathbb{Z}$ is a unit if $u \mid 1$.

• The only units in \mathbb{Z} are 1 and -1.

3

Theorem

Let $a, b \in \mathbb{Z}$. If $a \mid b$ and $b \mid a$, then either a = b or a = -b.

Robb T. Koether (Hampden-Sydney College)

Direct Proof - Divisibility

Fri, Feb 7, 2014 14 / 23

DQC

<ロト < 回 ト < 回 ト < 回 ト - 三 三</p>

Proof.

- Let $a, b \in \mathbb{Z}$ and suppose that $a \mid b$ and $b \mid a$.
- Then there exist integers *s* and *t* such that b = as and a = bt.
- Then

Robb T. Koether (Hampden-Sydney College)

3

∃ ► < ∃ ►</p>

Proof.

- Then 1 = *st*, so *s* | 1 and *t* | 1.
- So s and t are units and must equal 1 or -1.
- It follows that either a = b or a = -b.

3

< ロト < 同ト < ヨト < ヨト

Divisibility

The Fundamental Theorem of Arithmetic

Assignment

Robb T. Koether (Hampden-Sydney College)

Direct Proof – Divisibility

Fri, Feb 7, 2014 17 / 23

3

Theorem (The Fundamental Theorem of Arithmetic)

Let *n* be a positive integer. Then there exists a set of primes $p_1, p_2, ..., p_k$, for some integer $k \ge 0$, and positive integers $e_1, e_2, ..., e_k$ such that

$$n=p_1^{e_1}p_2^{e_2}\cdots p_k^{e_k}.$$

- Write the prime factorizations of 1024, 768, 324, 500, and 997.
- Describe an algorithm for factoring integers.
- Use your algorithm to factor 969969.

∃ ► < ∃ ►</p>

Definition

Let $a, b \in \mathbb{Z}$, not both 0. The greatest common divisor of a and b, denoted gcd(a, b), is the largest integer d such that $d \mid a$ and $d \mid b$.

• If
$$a = p_1^{e_1} p_2^{e_2} \cdots p_k^{e_k}$$
 and $b = p_1^{f_1} p_2^{f_2} \cdots p_k^{f_k}$, then
 $gcd(a, b) = p_1^{min(e_1, f_1)} p_2^{min(e_2, f_2)} \cdots p_k^{min(e_k, f_k)}.$

Theorem (True or false?)

For any integers a, b, c,

 $gcd(a, bc) = gcd(a, b) \cdot gcd(a, c).$

Theorem (True or false?)

For any integers a, b, c,

gcd(a, bc) = gcd(gcd(a, b), gcd(a, c)).

Robb T. Koether (Hampden-Sydney College)

Direct Proof – Divisibility

Fri, Feb 7, 2014 20 / 23

Definition (Prime Number)

An integer *p* is prime if *p* is not a unit and for any integers *a* and *b*, if $p \mid ab$, then $p \mid a$ or $p \mid b$.

• Can we prove that this is equivalent to the original definition?

Divisibility

3 The Fundamental Theorem of Arithmetic

3

DQC

Assignment

- Read Section 4.3, pages 170 177.
- Exercises 5, 12, 13, 15, 18, 23, 28, 29, 30, 36, 37, 40, page 177.

Robb T. Koether (Hampden-Sydney College)

Direct Proof - Divisibility

Fri, Feb 7, 2014 23 / 23

A B F A B F

< 17 ▶