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Divisibility

Definition (Rational Number)

Let a,b € Z. Then adivides b, denoted a | b, if a # 0 and there exists
¢ € Z such that b = ac.

@ In other words, a divides b if b is a multiple of a.
@ Note the following:
o Every integer divides 0, but 0 divides no integer.

e 1 divides every integer, but only 1 and —1 divide 1.
e Every integer except 0 divides itself.
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Example

Proof.
@ Leta, b,c,e Z and suppose thata| band b | c.
@ Then there exist integers s and t such that b = as and ¢ = bt.
@ So

c = bt
= (as)t
= a(st).

@ st € Z, so it follows that a | c.
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Example

Proof.
@ Leta,b,c € Zandsuppose thata|band b|a+ c.
@ Then there exist integers s and t such that b = as and a+ ¢ = bt.

@ Then
c=bt—a
= (as)t—a
=a(st—1).

@ Therefore, a | c.
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Prime Integers

Definition

An integer p € N is prime if p > 2 and the only divisors of p are 1 and

p.

@ The last condition is equivalent to saying
VaeNa|p—(a=1Vva=p).

@ List the first 15 prime numbers.
@ What is the negation of the property of being a prime?
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Composite Integers

Definition
An integer n € N is composite if there exist integers a and b such that
a>1,b>1,and n= ab.

@ List the first 15 composite numbers.

@ Are there any numbers that are neither prime nor composite?
@ Is 1 prime? Is 1 composite?

@ Is 0 prime? Is 0 composite?
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Negative Primes and Composites

@ There is no problem with extending the definitions of prime and
composite to negative integers.

@ Aninteger p € Zis primeif |p| > 2 and if a | p, then |a| =1 or
al = p.

@ Aninteger n € Z is composite if there exist integers a and b such
that |a| > 1 and |b| > 1 and n = ab.
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Anintegeru e Zisaunitifu| 1. I
@ The only units in Z are 1 and —1.
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@ Leta, b e Z and suppose that a| band b | a.
@ Then there exist integers s and t such that b = as and a = bt.
@ Then

n}
it
it
it
N
yel
Q




@ Then1=st,sos|1and | 1.

@ So s and t are units and must equal 1 or —1.
@ |t follows that either a= b ora= —b.
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The Fundamental Theorem of Arithmetic

Theorem (The Fundamental Theorem of Arithmetic)

Let n be a positive integer. Then there exists a set of primes

pP1, P2, ..., Pk, for some integer k > 0, and positive integers
ey, 6o,..., €6, such that

€1 -6 (]
n:p11p22...pkk'

@ Write the prime factorizations of 1024, 768, 324, 500, and 997.
@ Describe an algorithm for factoring integers.
@ Use your algorithm to factor 969969.

Robb T. Koether (Hampden-Sydney College) Direct Proof — Divisibility Fri, Feb 7, 2014 18/23




Greatest Common Divisors

Definition
Let a, b € Z, not both 0. The greatest common divisor of a and b,
denoted gcd(a, b), is the largest integer d such that d | aand d | b.

o lfa=pSp...p% and b=plipk...pk then

min(e,f)

ged(a, b) = p;

min(ez,f)

P>

min(ex,fx)
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For any integers a, b, c,
gcd(a, be) = ged(a, b) - ged(a, ¢).
For any integers a, b, c,

gcd(a, be) = ged(ged(a, b), ged(a, ¢)).
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p|ab,thenp|aorp]|b.

An integer p is prime if p is not a unit and for any integers a and b, if

@ Can we prove that this is equivalent to the original definition?
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@ Read Section 4.3, pages 170 - 177.

@ Exercises 5, 12, 13, 15, 18, 23, 28, 29, 30, 36, 37, 40, page 177.
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